Some new minor results

I’ve proved:

\bigsqcap \langle \mathcal{A} \times^{\mathsf{RLD}} \rangle T = \mathcal{A} \times^{\mathsf{RLD}} \bigsqcap T if \mathcal{A} is a filter and T is a set of filters with common base.

\bigsqcup \left\{ \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B} \hspace{1em} | \hspace{1em} \mathcal{B} \in T \right\} \neq \mathcal{A} \times^{\mathsf{RLD}} \bigsqcup T for some filter T and set of filters T (with a common base).

See preprint of my book.

Leave a Reply